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I. 1 Introduction

An economical technique is presented for:solving the

boundary layer equations thatyield the surface fluxes of

momentum, heat, and moisture for unstable conditions. The

method is intended to replace the i/terative scheme used in

the National Meteorological Center's Medium Range Forecast

model (MRF).

The MRF formulation uses Obukhov similarity theory which

posits the existence of nondimensional 'universal' functions

( : ~ ~/q H ,c :N , : )7 :that are functions of only

Z/L, where L is the Obukhov length. The c j 

functions give the nondimensional vertical shears of wind

speed, potential temperature, and specific humidity:

;? f;; 0~-' ';.0 ~-~0: ;000'; fdtD; :0

f If f~X~i99~ L);~ 0 ,(1.2)
-,: f; . 'iV0: , ,~f -f 0 , (1.3)

,, ~ = ~/-iL)

(1.3)
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The use of the von Karmnan constant k ( Q in

3) is merely· historial and is not?.required by the Obukhov

similarity theory. The turbulent scaling parametedrsu *

9 )*, have the:, same units ':as 'wind speed, potential

temperature, and specific humidityand define the surface

turbulent fluxes.. That is,

~ (1.4)

(1.5)

...... : (1.6)

In these relations , are the- (surface.)

th~~~~~~~~~ s.: tt

fluxes of momentum, heat, and humidity';'J is the surface

:stress; densit of t i; ' tesecif ic heat of
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air at constant pressure; : is the latent heat of

evaporation. Rewriting (1.:-6), we have,:,

11~~L
CFp~,,q @h); (1.7)

~_p u.%k _ L:.- ~, ~' : (1.9)

Many flux-profile relations have been proposed for 

(see, for example, Yaglom, 1977, for a survey). Most of the

relations for the unstable case that have been. used in

numerical forecast or simulation models are of the form

- (1.10)~~TM:(S)~ OXnLi~~q~· .-.



,The Businger et al. (1971) formulation is probably the most

frequently used formulation in numerical 'forecast modeling.

For the Businger relations, the: relevant.,constants are:

The relations: proposed earlier byDyer (1967). use a" 1 

:IcThe :-F, and.

physics formulation uses the~6 '" ' ... : ', t

proposed later by 'yer (1974)'., and Hicks (1976): 

;.;0g0;;09(;Sg; U-0i6') i,;).0;0 0:,0.$ 0 00f-(1.12)

From a numerical viewpoint, Dyer's original relations are

cumbersome since they result in no known closed-form

integrals of (2.14 - 17). These integrals are needed for

the i!terative solution for s that is required for the



computation of F ) (see section II). On the

otherhand, the selection of the Dyer-Hicks relations for the

surface layer turbulent formulation is particularly

fortunate, since the equality of ek , r e = f 

and oo = G simplifies the solution for : compared

to either Businger's or to Dyer's earlier formulation.

It must be recognized, however, that the precise values of

6o0Ck- E ~ Eand a are not known and are

subject to controversy. For example, Dyer (1974), in a

review of several flux-profile relationships, comments:

"the results of Businger et al. (1971) remain a difficulty

which calls for considerable clarification". In addition,

C. arl et al. used a composite of tower data to determine

~M (~) '. Their results are,

(1.14)

*4 0 ,f : 

~ (s) ~ Q -~ : 9)-%

S --\; 0 S X ; ; ) - 3~~(1.15)

and also



The Businger and Dyer-Hicks flux-profile laws stand in sharp

contrast to the free-convection profile laws: the free-
-~~~~~~~~ . .E .,7

convection relations require that the-'turbulent fluxes

become independent of wind shear for large- . This

distinction is important since computational experience

shows that the Businger-Dyer-Hicks solutions' for ~ , andC

can run out of control for progressively:'smaller wind shears~

U /a O 2 . We will return to this evidently

important distinction in Section II, but for now we:shall

assume that (1.12 - 13) are correct for domains in which we

shall apply them.

II. Solutions of the Flux-Profile Relations

A. General

In this section we develop some relations between /L),

the gradient Richardson number (R), and the bulk Richardson

number (RB). ' The bulk Richardson number ': used to

determine ~ . The surface fluxes can then be compute. from

We begin by suk#tit~ing (1.1, 2) into a defining relation for

the Obukhov length,

rk 9 - : : X 3 : :(2.1)
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Panofsky (.~197 8) suggested~ t;hat(,1978) suggested;thia-t ~

H I 

the limitilg form of :KB..ism
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Eqs. (1.-14), (1.16) , and (1.17) are consistent with local

free-convection, as is the Wyngaard, et al.- (1978) comment
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fits the Kansas data (Wyngaard and Cote, 1971) about as well

as the Busingerprofile lin the domain .05 -- 2 
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The result is

(2.2)

in which the gradient Richardson number R is defined by

/ ( ~~~~~~~~) ~~(2..3)
The gradient Richardson number combined. with the Dyer"Hicks

flux-profile relationsyields 'the 'simple result: for %

(2.4)

This equality between R and % (for ~ ~< 0 ) is,

unfortunately, of little practical value in numerical

forecast models, such as the MRF, that have limited vertical

resolution. In these models the local gradient Richardson



.number cannot be computed with fidelity, and the bulk

Richardson number is usually the best that can be done. The

bulk Richardson number between two levelsZ %and ~ is

defined as

(2.5)

In (2.5), g is the acceleration due to gravity;9 is a

representative (or average) potential temperature between

and; A - o); U )-V ) ; : n := - :

For modeling purposes~S~ is usually the height-of the first

layer or the midpoint of the first layer. In either case we

generally have >> = ; _ .

pExpressions for U and AO may be derived by combining (1.1,

2) and (1.4 -6),

0

LG < . . . (2.7)



' The results of the integration of (2.6); and (2.-7) are,

I ~). , 
(2.8)

-(2.9)

for whichwe .have,
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(2.13 a,b)

It is customary to express (2.8 - 13) in a somewhat

different but otherwise equivalent form,

fu f= ~ ~ if SP-, ; CL/L .L (2.14)

I- K /tI- I $ '* L). ,
(2.15)

(2.16)

i.1 - (2.17)
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The functions y M represent the deviation from

near-neutrality: for conditions close to neutral, we have

The 'standard form' (2.14 - 7) for and U are more

convenient to use than . For conditions

sufficiently close to neutral, an .attempt to calculate 7:

or an lead to computational failure. This liability is

not shared by the standard .forms, The computational failure

is caused by R and Q0 approaching unity for nfear-neutral

conditions and small Jo'". With limited precision,.i,%j and

can be erroneouslycomputed as negativeanumbers with

very small absolute values. .This causes the arguments of
. a.

the logarithmic functions to become l arge negative numbers,

nand the computations halts.ur



The transformation of lFm,, to the standard form can be

accomplished by manipulating (2.10, 11). By using some

simple algebra, we have

%

+~~~
(Re') ( w,')" ± ,:)

from which

Y= - ' ,L :: R0 - .o. n- I
(2.19)

; 00+l R 't:-

follows. A similar restructuqT: vof ' y, lds



''Yj - ~ 9A (t2.9.'.,' 

. (2. 2 0)·

Since the ·factors in ~W are all greater than unity,

there. is ~ no da'nger of computational failure as is the case

with M . The computation of :/L fromU , Ae , , and

~.is more difficult than from U/0 and-/ ' The

relation/involving the gradient Richardson number

is replaced by

:: -0: ' ' ' ' ' '
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Eq. (2.21) unfortunately yields no such simple relation as

in (2.4) (i.e.,= ). For conditions close to neutral,

however, Y -> 0 and

(2.22)

As-- increases, M increase, and becomes

increasingly inaccurate. Nevertheless, the near-neutral

result ~ N is a reasonably accurate first

approximation to (2.21) over a fairly wide range of and

~o °S -:X : V-0 0 f ; :

To partially support this claim, we will examine the

behavior of (2.21) for small values of - . From the

definitions of

2-: 

X ; :; : 0; 0: -:E : 0 :1 : 

:% D : =: : ::

:~ c As-Q onrass ; icesad) ::eoe

we have



, , i, Co.,

(2.'23) )

�'± O(�)

-�

( t~-~ ~G-)

(2.24))

(2.25)

.+ S

(2.26)

If we neglect , in comparison to (
I 

and

C . I

9 I

tf I:f- ": 7:~f: ;:

CQ;:��. -
SX\0+ 4 W 

.5

, ((2.21):$ becomes,

Ft- - +w i2
I 1n l eSS.Io 0

� � p --Z- , + lim - &
F�, 7 1 'Z-O � � -2- I



0 08 r > i 0 t t; RB t i ¢:; A-- ;(2.27)

as a first - order approximation. For the Businger

profiles, ga =-5 and -- ;and - L - ; for

the Dyer-Hicks profiles, c= = I and c,-ws-o, thus,

there is a fortuitous cancellation of the term. Table 1

compares N with the exact value of 9 for the two widely

differing values S - O- oOt- and -oe S..a We see

that 9 is a close approximation to for 0 -- o. S

(error ~ 1.4% for2 =0. 001 m; - 2.2% for 0 = %Om). We

note that-Si systematically overestimates-S by a small

amount that slowly increases with increasing e and
decreasingF ./Z -

The contributions of 0 to are generally small:.~ .

we can define, ( s/a

~ M~ -- ~= 0 .::-'"C00 -0(2 0 .2 )M~i:?E ; - :- :(.) - : : :



Table 1. Exact and approximate (Eq. 2.22) values of for

I -L l-0i000(meters) and 0 ,.0>01 ~ o (meters). The

exact values of -L and - are given in columns one and two.

Columns three to five are the approximate values of , ,for
:- o = 0.001 (a), 0.1 (b), 5m (c).

.500 - 2

.100 - 1

.500 - 1

.100

.250

.507

1.02

2.08

5.32

10.9

58.4

.500 - 2

100 - 1

.501 - 1

100

253

.511

1.04

2 .11

5.45

11.2

58.3

9: I IC 
I 'gm

I .500 - 2

.100 - 2

.501 - 1

. 100

.252

.507

1.02

2.04

5.13

10.3

51.4

-L

10000

5000

1000

500

200

100

50

25

10

5

1

I -0 0 0S

0.005

0.010

0.05

0.10

0.250

0.50

1.0

2.0

5.0

10.0

50.0 



so that

N �2:� (2.29)

for most practical purposes. 'This approximation is standard

in the boundary layer literature; it justifies the

approximationS:

[ c A,4 ~ ~I

-F0 ;C~k SiR } 0W 8 k sU~t; '
(2.30)

The exact form is of course,
:.0 ";I .f ," ~ 1~ - 1: ff A ' ':.d: f:-0 :: 

L _ _ ¥_ _,__ _ _ :i_ i_ _ _ · ;

:: (2.31)
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The latter expression is used in the current MRF.

B. Formulas for small -Z/L

Having affirmed the approximate equality of ~ and ~ for

--~ <O& , we shall verify that can be fairly

well approximated for O$-% S o by

0 t- % (2.32)

To determine the values of 0:) % b t
powers of : 

we expand (2.32) in

(2.33)

COL

CL



The expansion:of to second order :yields

S�w 9�svL�. - �

% T�I� L�g +�oV�t
II

6 I I~ ~

4 (2.304)

in which 9 andD0 3'.)haveIbeen neglected. A term-by-term

comparison of (2.33) with (2.34) shows that O - E

and -o; -- cL-l.--0. The coefficients O-; can be

determined by expanding 0to the 3 term, thereby

producing a Pade approximation (Bender and Orszag, 1978)..

We choose, however, to determine a-. .% by forcing

collocation with .: -

:M at ' ;:.X. . : 0 53)= - 9 .8. The result

is



I- (e.1~SI a -< - e " 5 c 5 o (2.35)

A similar calculation for 9 (7-O. 5)- I."~ ~z q

e --- : _ -%+.--%
I -- . . 7 i C15 

0 - 4 .6
(2.36)

a

Eqs., (2.35, 36) approximate . [ for o - 4 .O

within about 10%. Further accuracy can be had, although it

is probably not needed, by forcing higher-order collocation.

By requiring collocation at 0 0 o 0, 00.25

and .50, we can derive the approximations

~~~ 2 :::
:: 4. 0:0D005Z0585: g + G^,o&05Mi )

(2.37)

gives,

and

:18Y ( i) --

,KWhi) =7



F ~ ~ f o r :, :;~: .,~ O.,'~· : ;say,
0"0;0E'00t'~~~~~~ 8 %023~;00<':qt 2::-000:(27.38:)'

In computing F for, and, say, = d',

":0 oo0w;w'0=-~--' ~'~ , we see that 7--and-b --- 7o
~R: ='0:; Ij | . That is,'~ and 'represent fairly

modest perturbations of the:.more dominant . '/.teArm. As

theinstability and roughness 'increase, the logarithmic term

loses ,its dominance.

C. .Formulas for large -Z/L. 

We. shall now take up. the problems encountered when we deal;

with strong instability, that is, - -'>'.oo5 . We first

derive simple asymptotic expansions for :'.that are valid:~ ~~~~eayp at ar VD, ;:0;f uS0 ;0;lS-f 0 T ;f : ;-te alid :
'for the general case "':"..= - -'

The method is useful because it clearly shows :the behavior

of · pj and because it can be applied to cases in

0.which .~:M~H . -are not simple fractions (example:- Dyer's

earlier relations.' that use = 0. v -). SWe

discuss the problems that can arise for.-»>> for both the

approximate and' exact -.solutions in Section D.

000ff -fi ffft0000E k 500S'~' .:,0;0b000''0,f' .:' t f 0 S- . S, '0f' A:: 'f:

:::Xt 00V;SatE;X f f. 0:'0f: :..'?0L;S--fSt,0?SX, i'f.t'f .X:l00 :0 0:;-ff~~t:f- ;,00, - . ? ' .9' 'f f.



approximate 1formulas for' t 

valid for

t-s -> O, .5>

U() (~ --

we decompose t(Q) into two ilntegrals:
II 

l;~ -. 
,.

:
: a

Q- ' A.- :
0 : : ; .: i: t- ~; ; .~ ;

- ~5~oCo $CD[
X0 O+ : , iS~ f .f , 

; .1: .7 -. 

I ,

(. \ '- 6 '/L)

:II I' - + D : : :: :(2 3 9 )

where -/L /L .

:I C's ) can also be written as

(2.40)

in which

that areTo develop simple

&I -0,, L, I'll1 --:, I0\ k A
SE, ;- 0 :e )*

I �� .m
� � r� 0- " O+-

(A-) = I , ( o Co})-1-1 Q /V N
I-

'2- � j



:T 'I: I
$.D,>O

' TL,| : lp 7-1 00: :0:f::f: (2.41)

where

I
(jqy r)E.--.

I -( V-)~\4l 
(2.42)

ff f t; f f 0 fy f t; dSS0003 t 0 ; S tVS f f .f ,,;0' Hi; ov 0Pf ''; 0' , \ 'A -'-,.,

f ....... 7..r.......;\-and. 

6' jIf ffEr L
0 t:: f ff tS; 0 f:0r ,57~

(2.43)

We first focus our attention upon . We add and

subtract nv7 % to ], , in order to create integrals

Tbl

:-I. t I VA :
r O :

* IT

i . : t. :.
. : i : - ... . .

, : I, 

,&-: :; f:, 
:;E (;0J0

41 .
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lv� "1� - ��



- \ivvi \jw~Nr

-t-~~~~ WA r

vCi0 -0a ~L

'C -A

tr-,o 1Lo:O 0WA4:

L --~c ,, f : :

:'m I : :/V-

- - -I

The presence of 1L-L C- prevents- I, from diverging.

logarithmically as %0- , but it will not thwart the

divergence of Tk as Y-c ;. 0 We recognize the second term

in T 0. as the defining expression for the exponential

integral function , E,- (u) (Arfken, 1985),:

(2.45)

that for small u is'given by the series

I )



GO

�LL -� �•. (c121 LA

t;Herei.; 6

(2.46)

;is the:Eulebr-Masheroni-:constant defined by.

*Nte that both th armonic ~seriles A-~i

,?, ~ ~ ~ % ; :6; C f, No. e:0 0D3 %; ;;h(2* 7)0 

00f=:-v~n\ a-1gd6~ bo' t tbo 'the hatmo c-hekr ;lt
.... . .0-and: L " diverge as i --', but that:their 

difference is finite.. .-Note also: that .in J the limit %-~ O0

-,causes the.exponentiai integral- to diverge, but: that the:

divergence ,ancels:d 

I0 f: 0 St000 f f;0; ~4 (2. 4 8 .=00 'C . t . ; 'i.'~"9 : '- .

I �� :� �� xl. 1,

I I m .
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We are left with one logarithmic divergence in the

evaluation of T . This constitutes no special problem, as

we shall see.

We now examine

cc~~~~~~~rT~~~~~~~~~~~~~z~~~~~~ 1'Tr F c i. .q 7~ KIT:b :1;< |:z wtt >-9L 
(2.49)

We begin by writing the integral expression for the gamma

function (-) as

::Yr,nY0uy a- 't -:t~t i* :u

0 0 0 ff 0 ±Qi- -r S

which is then differentiated to get,

A- ;_ _ -:; : 0 ;.\: : S g :: .} .~~~

(2.50)

(2.51)



which of course is the same as[AI(I%(U1]taF~)/J~]

This logarithmic derivative is the definition of the Euler

' diagram' or 'psi' function (Gradshteyn and Ryzhik, 1965):

j ~~~~~~~~(2.52)

Let uis now rewrite the second term oo Y-

and change variables: t-e - This change yields

0~~

T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- t0 i 1(::10+Xf3 S ;X=Xi < , ;~:: 

an equality that permits us to write

~~~~~~~~~~~~~~~~~~~~~~~~

: n f; dqa' Y0; wrt ? -=
: dd ff 00 :030 fff 0 t X X,,,;D,0 : . ffCO:0 

: i ;
.. . ,:g C :

f , a: 7

0 , S: i; : X
: :|f. :

00:5:%:\V(2.53)
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. 7

t . ., S .Si
- \ 5 0
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t u \ 2,: ::!

:S: :: : : :. Sf

; > ', d

.

E i\
:: i, 4

0 ' ::

. .

S A

. r

: ' :\ \
* f X

y :; ;. ' pi: 0 fX .
'{.''' f 0 .R f

SS'0 0 f f

: f: : :

:(2.54)



Thus, 3 is simply equal to the Euler di!gamma function.

Certain values of the digamma function have been tabulated;

values of particular interest to us are,

::~"~" = -- '"¢=; \:-0_0X , -I,.q(,,5 5'o o P 4 

; E(!',4); = - ,0>'- -% -. n ,~ .=-'1. ~2.' 'f3 0 &3,¢555UZ5 

0Let us now turn our attention to and I . To approximate

.% (2.55)~~~~~~2

these functions, we need only to expandp o t

: j0~ iL ; (2.56)

If we require that %7[> , we can:write

Af.

ly 1;0: C 0 Q~vt r ffX f:S (g ; t): + l' _ .-.-- A. 0

¢~~~~~~~~~~~25



in which d the series: 

- (~ '1)

J'I

-1- �.,

"o X t:-- l witli _--y we have,".::.. i - (t i - ,1i -C - J 7.
: VA H : -:X~-: 0 3: : 0R;X : 

2.
1<'- . IC -. A/

i , X \

0 X. .:0 ,-r ':: .j .:

(:E/L) ,with -;.- we ,f: ::get,' :

/L 1 )=. ~ ;;' .j 1 -:

t::: : 1. ' : ) d: N : . 8 i .:."' ................................ , 7 '. :' ' _-, .:C:7:: n ........................ ; ;c R E
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(2.58)
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The presence of 4if in is precisely what we need to

cancel the divergence in J . Our final result is the

simple expression

(2.61)

Although we have been less than circumspect in our

manipulation of limits and divergences, our finali

expressions can be justified 7--.they yield correct results.

Explicit expressions for i<j) and. W()with A&- I{L

are given by

kfr: s -Z.07?v f,1 +:
j mv$00~~~~~~~~~~/ -.06003786 +>0 :00:0 i;

+-- l I
: : ~

- _ _ 1: i:: 1- X :

10O (-Sy/4

and

4 . : , q . .: -

-( __I 
1'4) I2 1 ,( )0/

+ n±.

(2.62)
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0-1- 4 \ + 0 0(2.65)

+ , 9,9Li O

::Relations (2.64) and (2.65), along with shorter versions in

· . ~ which: first the' Q '-/' term and then the . ):-

terms are omitted, are shown in Tables 2 and 3. As

expected, the accuracy of the asyimotic relations improves

as (-%) increases and if the -- ) -/ and -_ .)-/?

' -terms are included-in the sum. We see that.- . :).

are accurate within about 1:.7% or less for - / 0. L- 

,, and; -H -within about l{.or less for ,.2 o.,..

]Accordingly, '-' (I will be adopted as adequate 

.approximations to ' for :St' n instabil 'lity, that is,

for - :o' .0. ' '

0 000n':t 00 0 ; ;0 ; : 0 00f0 2t;t 0t':0 ;0 0t;;'' '"'\'' '' ''.'; ,0 , 2 0t;0 ;0 ''?

I I

; , X at-

:;; te S ff E:-? : :

|:. i.SC .00.;-n.. :: . - lf
i 'f - C: ... : :

Xf SC:, D f
t: ".: ':':;, f . y

'DS'.''.y' :\ , ' 0 0 . '
JVT a:, ;; f .:,

t-0-'; :(20.:63)'

T-: t d:: S ;. : ;N t:f -fi.\ f: :

: f:: .\-

I
+ I - -: � 1��,Y/4�



Table 2. Comparison of the exact values of V() with the

approximate values calculated from Eq. (2.64) with the

( ! C(r/4) ( ~0l) 7 (~\)- (y= u2~~);( ~-) (=- p_)) terms.

t 0_ 0 s~sc*Wif ('1) qw) 00Dt6

0.005 0.01952 8.886 -3.356 1.345

0.01: 0. 03815 1.439 -1.135 0.8417

0.05 0.163:6 0.1606 0.09176 0.3561

0.1 0.2836 0.2797 0.2652 0.3763

0.25 0.5319 0.5310 0.5291 0.5645

0.5 0.7934 z0.7931 0.7928 08076

~:' i 1.116 1.116 1.116 1.112

2.0 1.495 1.495 1.495 1.497

5.0 2.068 2.068 2.068 2.069

50. 3.786 3.786 3.786 3.786



Table 3,. Comparison of theexact of wth the exat ~vale ' of w (t wth;the

approximate values calculated from Eq. (2.65) with the
(((2;/& -y/L ~C) ers0 f 0"~~~~' ' - ' :~i, }' , ,-''.t',.. (_~>- 1.~ ~.= ~;*Y~. ,_%¢) ~ =~ M ) '- - ) ' " %' --~.~ t rms'.

11.14

-0.2805-

0.09285

0.4607

0:. 9460

1.381

1.879

2.431

3.219

5. 369

-16.48

- 5. 163

0.005500

0.4452

0.9444

1.381

1.879

2.4316

3.219

5. 369

o0.005 :':

0.01 .

Ou.i05<
0. i05

0.1

0 .. 25

0.50 ',

1.0

2.0

5.0 

50.

0-.03885 .
0.07559"

0. 3154:
: W.0:, L- :~~~,: .

0. 5343

0.9624 -

- 1.386 ''

1. 881

2.431 .

3.,219

5.'369

0.6266

0.6648

1.o00

1.400 

1.886

2.433

3.219

5.369 
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D. Preparinq the Formulas for Use in NWP Models

The boundary layer relations that we have examined must be

applicable to regions of extreme variations in instability

and roughness in order to be useful in NWP models. NWP

models often exhibit far stronger variations in j and L

than would be expected in boundary layer field experiments.

While it is expecting too much for standard boundary layer

relations to yield accurate results for all modeling

conditions, it is reasonable to expect that the relations

will at least not degrade model performance.

Fortunately, the application of the new relations is usually

straight-forward. The steps are:

1l) ~is calculated from (2.5).

2) N is calculated from (2.22).

;003;) t ~ and;; Hare computed from

(2.37) and (2.38) for --~N~o.and from (2.64) and,

;(2.65) for- V0. - . :

4) Approximate F and from
·?



N)' ~~~~~~(2. 66)

5a) Estimate k and f rom(2 .:2:8) and(2.9). .

5b) Alternatively, compute the momentum, heat and

: humidity transfer coefficients from

C 0 :Cm ~:0i ;W~ :;0;0::t4 0c00 t< :(2.67)

6a)0 Compute-the fluxestr and using (1.7) and (1.8).

The latent heat fluxT~ is calculated from (1.9)

and the relation;

9. 5 -A0 ' ; 0(2.68)

This formula for % follows from I : 

and the extension of (2.8) and (2.9) to .

00 ; f00; VE f f 0?0000t0000X$0 SX 00 ;0- 0V;T,?0 0X,, 0f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t :f;000it000~~~~~~z



6b) Alternatively, '7; 2 can be calculated from

0 R rT : , :: .: f: .00 C 0 a, ,. ,.

q=-~ ~ ~~~rbK(

;= -. i U :IAG (2.69)

Tcz - ~ C~, I4 U: 

Steps (5a, 6a) and (5b, 6b) give the same results and merely

differ in form.

By contrast, the MRF follows this procedure:

I.) The same as 1.)

I~TI.) is calculated by iteration. The·'exact'

relation (2.21) is solved using Newton's method to

,an 'accuracy' that is substantially greater than

needed.

III.) m, [ ~e;s) are computed from :) ()

which uses (2.19) and (2.20).. Note that: ( )

are not neglected. 

t0IV.) CV~% to 8) and C are computed from 

a a X 0 0 ~~~~~~~~~Ll::`:`Ii: r 0:0 C-:-: V- : 0 



; .E ? : f f - -1: . : S WS 

(2.71)

f 4 : :. f : : : :- i:.~~~~~~~(2.7 1

We see that '~;and M increase as - increases;YM

accordingly, CM i ncrease without limit with increasing

instability.

E. Physical and computational Limitations

The steps outlined above prompt questions about the limits

of accuracy of the approximations as well as the limits of

suitability of the 'exact' relations. The first question

concerns the capacity of either the approximate or 'exact'

solutions to give reasonable fluxes where h is not much

larger than Z . The second question concerns the

fidelity of the exact solution and the possible breakdown of

the approximate solution when - ~ is large (> L) . The

third question is: Of what use is the approximate solution

when -L is not much larger than4(and perhaps even smaller



than , ). These questions are related, of course, and

-they have no completely satisfactory answers at present. We

shall suggest ~several rather pragmatic provisional

solutions.,i "

., '-First question.' It 'is known that the logarithmic wind law

is not valid" for ' . It is also knowsthat f or both

smooth" and moderately .'rough surfaces with > '00

that the 'logarithmic wind- law is valid for both laboratory

(wind tunnel) and' atmosphericmeasuremens. Following
·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

;: :Garratt (1980')j,- we denote 'by 'the owest -Zfor which the '

;profile law sare approximately :valid for neutral and

- · unstable lapse rates..' Tennekes (1973): has suggested for the

... ::'neutral case that -,- : is,. ' Th regon ' s,-

Garratt's 'rt'oughness sub ayer'. .''. !. ::-'

At heights much lower than the 'individual ro ughness u 

elements 'can be 'sensed' as-the result of turbulent wakes

created by flow around individual elements. This violates

the similarity conditions tha leadtothe conventional a

flux-profile law -byforcing a length scale, _( n ' additiont' %- '

be used in determining' M- . Wind tunnel data suggest

' that the wakes oft' individual elements propagate to heights:

several times(say,-.4) the heights ( 'ho) of the:average 

-roughness element. , If we use as a' crude rule-of-thumb that

-o/.o, ;then 'the minimum height for the profile laws

to be-valid is . O 

\0ff~~~~y "000.' :00't00 f3': f ff,?0tS~~~~~~~~~~~~~~~~~~~~ff.:; i~~~~~iSS 0'ft000-?000S'' 0000:. t000' f~~~~~~~~~~~~~~~~~~~~~~f~~d :0t00f X0'.-ff ' a~~~~~~~~~~~~~ti f :0-ftf0: 'C 0 :40 $ ff:X~~~~~~~~~~~~~~~~~~f'S 0,.:;0 'V0:f~~~~~~~~~~~e' 0f dE; tySE:.ff~~~~~~~~~~



Garratt's (1980) analysis of data from two "flat, very

rough, tree-covered terrain" sites suggests that ~ * So

for momentum and that 100 for heat. This is a

disconcerting result. It means that ifthe largest

roughness lengths in the MRF are, say, -a , then the

standard profile laws do not apply to:heights below z350 m

for momentum and1O000 m for heat (and, presumably,

humidity). Both heights are as'great as-or greater than the

heights of the lowest (surface) layers of most NWP models

and render invalid, or at least call into question, the

surface fluxes. :

In our calculations, we shall takea less restrictive

position and assume that the surface profile laws are valid

provided :

Vh l o .6 If we encounter points where o > h / ~O,

then we will decrease 7oso that we satisfy the condition = ./1o.

Second question. The Businger-Dyer-Hicks profile laws are

thought to be reasonably accurate -for / 3 . Model

computations, however, can create unstable conditions that

significantly exceed this moderate limitation. For these

cases, computed fluxes can be completely unrea&-listic.



Consider the following situation: : , , , and h

are held constant while U is progressively decreased.

Decreasing U to U -- o rapidly increases'"- R. and' - .

When- increases, and ¶ increase, (see Tables 2 and

3). This decreases F and F which, i'nturn, increases C

and C (see 2.70, 2.71). ForilL >1> ,the.decrease in U

00..exceeds the'increase Ct bing e C ~ , thr:yteceain u~ thereby ̀ decreasingq the

fluxes of momentum, heat, and- humidity. This. situation:is

typified by Case A of Table 4. :The near neutral condition,

-~L %l0oo~ w~ , with the strongest wind (-7- m/s), -

produces the strongest heat~ flux in Case A. The most,

unstable condition of Case A, - A = '% : , with the weakest

twind 0(--'-- 'm/s), produces the weakest flux. (Note: the

heat flux ,in K m/s can be converted to W/w7 by multiplying

by 4' 3.,).

;0:XCase A with; ~'~0 0 ,= aO %m ;m is-typical of boundary layer

field sites. Cases B, C, and D with* . = ) m I

.0 .;'V f;.0 '00t0'f000i.'-.-fVt00' 0 ~ 0XXtt~~t

X , ftV 0f . f 77 ;· 

D;.0:0S u; ~f f 0 d0;S 000 .000000 00 t0 0 ; f f:j; -0; :00 0 . f 00 S : fi f- q



Table 4. Momentum ( I ) and temperature fluxes (

wide range:of wind speeds, temperature differences,

lengths. ::

-Lk*e*) for a

and roughness

A
$0 0 : U:;(XtIs)-. 2:3.909:

.' /: L =0.05
2..0-0 _dl_:0.00001f0 : d. f't: ':~: _0:-o/t. '= 0o..oo0ool

.-)= 1.30

=-tt,,,( .'s) =0 .111

7. 48'. . 5.25
100 '50'

0.5 1.0
0.0001' 0.0002
0.150 . 0.086
0.0434 0.0342

B
16.2 5.'06:"
100 0 10
0.- 05 0.5
0.001 0.01
2.97 0.411 :
0. 382 . .3197

C
10.4 3.28
1000 100

0. q~, ~' -5
0.01 0.10

7.81 1.41
1. 63 1.26

D
12.4 3.85
1000 100.

0O12ve 0.1
0.001 0.01 

' -: ' 0..0112 0. 0625

A : : -- i0. r n 
B: %° = 1-6C: , 

5.56
50

1.0
0 . 02

~' 0. 246 ': :" -

: 0.182 :

2.31

50
1.0
0.20
0.935
1.,35

2.70
50
2

0.02

0. : 0586o<!:0 586

:2.50'
25

' 2 -2
o.o::0.04

:I0..153

0 ;0.180
4 Q ,. 

· 1.63
25

2
0.40
0.6;'37
1.52

1. 9.0 . .!
,:.25

'-0. 0724

0: 0583

0

�2K

-':'1.57

.10

5
0.100
0,.0872

11:' :'0.192

1.,03

10

5

1.0
0.394
·1.85

1.18'1.ff0- < f .

10
0. 1

'::' ' · O';,'i ~

0.0414
"0.0629

- : .? . -

00 ; S; 'W 0 
·

S

1.11
5

10
0.20
0.0589
0.214

0,.729
5

10
2.0
0.276
2.17

0.838
5

20
0 ...20

': 0.0280
,:0.0701

0.493
1

50
1.0

0. 0252

0.299:

0.326
1

50
10.0

0.123
3.21

0.373
1

100 
1 .0

0.0120
L 0.0986

* hz. 5on

\-~z. 5o vr_

3 .68
25
2-

0.0004
0.0439
:0. 0275

2.29 
10
5:I-; 5 f :

0.001 ,
0.0202
0.0214

1.60
5

10
0.002
0.0114
0.0:182

0. 687
1_-.

.50
0.002
0.,0332:
0. 0143::

?: :-,;:
. . .

.D :t C 0 f:; ::;



wre examples of areas of extreme roughness found in NWP-

models. It is with Cases'B, C, and D that we encounter

computational and physical difficulties.

In all cases the surface stress decreases with increasing -

h/L. In sections B,; C, D we observe a c urious behavior,

however, as the windspeed decreases, the heat flux;

decreases, -reaches a minimum, and then increases. This is

counter-intuitive. Case C with I=IOmis:-particularly

extreme. The lowest wind speed, U o.3 wo' /s , produces

the highest heat flux, 03 K 4V ...

(~ 03 0 0~ ; ) ,' - about three times the solar

constant. We seek to eliminate these runaway heat fluxes.

Although it may appear that and : , (both increasing

functions), eventually equal and then exceed Snh/o, causing
the fluxes to become infinite and 'then reversing sign, this

is not the case. ;From (2.6 - 2.9), it follows that-. 

'.0approach, but never equal or 0exceed, zero.'

On the otherhand, VM are only approximations to . For

large enough- , -j will equal and then exceed / ,

causing the computed fluxes to blow-up and then reverse

sign. These nonsensical and useless results can be

prevented, as we will see.

Consider the smallest allowed value of /o, that is,



4 h o; = i 0 . Now, increases faster than ' 

For very small-s ~ '='- 9 , - (see 2.35,

2.36). For very large.-~' .- Eq. (2.65), V r Eq.

(2.64). Since for large-i ,and noting that J / o =
q.~ -and also that 1 1 . L % -' 

setting9) equal to .'-,'j-.~ i/ o .,):
0%> ~ Ht ' ': , we get '- This means - . I 

X'

is the largest value of instability we can use and be

assured that CH (Eq. 2.67.) does not blow-up. This

limitation is unacceptable.

There are several artifices that can be employed to avoid

some of these problems. None of these devices can be fully

justified, however, by appealing to field data. One

artifice invokes free convection. There are at least four

ways that this can be done. -First, Deardorff's (1972)

convective velocity scale W0%.can be 'switched on' whenever

the values of C m f i C '(neutral) and CH >w ', C

(neutral). The convective velocity scale is 

in which H is the height of the convective boundary layer.

Second, free convection can be introduced by fiat by forcing

the velocity dependence to drop out of the calculation of I. Q

whenever - or -

exceeds a specified number. Third, the Businger-Dyer-Hicks

flux-profile laws can be used for - C c- constant,

where cc is on the order of unity. For - % >C , we use



:: ft lE 0 ; 0:ff f ff 00000 f L t000: 0 · ' ' ·: : 't0 000:·· '·.! ·, i, ·0't~ : AV:0: D i c;0 f: ; :T0 :M' i0= " , .~and -=. .. :: . 3, in whichi are positive

constants. Fourth', flux-profi le laws ':can'be 0used that

embrace free convection as anasymptotic limit. The KEYPS

(or O'KEYPS) equation is a weiil known example- of thisz.

Invoking mDeardorff's mixed layer scaling to limit runawayv r

involves several:assumptions relating to : . I-t is

-assumed that U 'c6an bef approximated by '. j4 , and-that

C,000T0 C t00 28; (,neutral) and,'C C(neutral. This

leads to 

(2.72)k~~O~~(~HrpJC~~~2 /3

'We see' that the surface heat flux depends upon I 'and,

'that there 'is, no' longer a need to compute Rb 5 3 and.F
fiC~a 0 ,07 .D. S00 ;t .t:.: C~ .,; ade ':

'0;:::,Introducihngfree :convection by fiat, is rather direct.

assume: 'that

We

;g ?X : '· :: '? f. [.. 'ff .D ; ; :f ff : ~ f

'0.00 4 t :.00Sfd: "? f- "" :0:u
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where A and M are constants. To force U to vanish, we

choose M=1/2. The result is 

(2.74)

Deardorff's result is similar, except H and h are

interchanged. Carson (1982) also gives a free-convection

result. For 67z,? his expression is

% ~:A;' r: Cp ( j/T1 rf20
,~~~~~~~~ \. I1 '51 ~ _ x A t/

(2.75)

This result shares thelet dependence with the two-'!

previous expressions. The difference is the length scale°.

The third method takes notebof Wyn gaard, et al. i's remark

that H o, ~: 3 (see 1.18) for ,',~:

We speculate that this-'IS law also holds for all->,Z and

~ -; ~A I Cw , q3' "t0 FIA CEl



also that 1 'M\b(-j)holds for-%/0 . After integration

from o to h, we have

y '~ H -b

Our method for dealing with large-~ andE ?o will not involve

invoking free convection but by simply limiting %
i'i, 4

and

We first note Table 4 does not seem to indicate a minimum

value of -LA 8 for any particulajr v;aljue, of '" 5U) 

h '~ ~ ~ . However, by examining many examples, a'
'~~~~~~~~

~~~~~~~~~~~~~~-: ~::.",~{ .,' i,' ' H : i .: "

pattern begins to emerge. -A:m'ini'mum occurs for small -L and

large iwherever -

when -Y Z - '" (2.77)



That is, a minimum can only appear when Z begins to approach

the size of -L,

_-Z /L
-yI (2.7 8)I/-0 :0 0 RM . (2.7:8)

To avoid the problem of runaway heat and humidity fluxes, we

choose 

(2.79)5 0

This choice has the added advantage of assuring us that

(I g)can be neglected in comparison to (S .

To achieve the restriction on[/ / , we simply increase

-L. We do this by increasing U so that I/ = o is
50

satisfied. This change decreases CC so that the

possibility of runaway heat and moisture fluxes is avoided.



F. Summary

A simple, economical method has been derived for computing

the surface layer fluxes of momentum, heat, and humidity.

The functions involved in the computation have been .

... : .simplified and split into tfw6ategories.! The categories

correspond to.: weak and mildjinstability; strong

instability. Pade - like functions have been derived for

:X0:- the -first case. Asymptoticfunctions :have been derived for

; the strongly unstable case. 

To avoid unreasonable fluxes, two restrictions are p'ced on

the use of/the method. The first restriction is invoked

when _ ~ %,that is, when the surface similarity;

-~ ;relations are forced to apply t the 'roughness sublayer'.

The second restriction is applied whenever the surface layer

becomes so unstable that -L -- o. Physically and

computationally plausible reasons for the restrictions are

presented.- 
0 fi Vt ;000-t ,00 t0400 f f .l C- TSED 0 t-f f ffX TV ff~~~~~~~~~~~~~~~~~~~~~~~~~~i.:-00 fff000000 f -Xt- ;fa. atS:00 X,:f::,,0000:; R-: fiS: t00000F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f~~f $00 ff ::~~~~
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